Source code for MDMC.resolution.lorentzian

"""The Lorentzian resolution subclass"""
import numpy as np

from MDMC.common.resolution_functions import lorentzian
from MDMC.resolution.resolution import Resolution


[docs] class LorentzianResolution(Resolution): """ A class for applying a Lorentzian resolution to an :any:`Observable`. """ def __init__(self, e_res: float): self.e_res = e_res / 1000
[docs] def apply(self, FQt, t, Q): N_Q, N_T = np.shape(FQt) window = self.window_in_t(t[:N_T]) return np.broadcast_to(window, (N_Q, N_T)) * FQt
[docs] def window_in_w(self, w: np.ndarray) -> np.ndarray: """ Calculate the Lorentzian window function in frequency space. Parameters ---------- w : ~numpy.ndarray An array of frequencies. Returns ------- ~numpy.ndarray The Lorentzian window over the frequency array `w`. """ window = lorentzian(w, self.e_res) return window
[docs] def window_in_t(self, t: np.ndarray) -> np.ndarray: """ Calculate the Lorentzian window function in time space. Parameters ---------- t : ~numpy.ndarray An array of time points. Returns ------- ~numpy.ndarray The Lorentzian window over the time array `t`. """ # The Lorentzian window in time space (i.e. the Fourier transform centred around zero) # The Fourier transform of the Lorentzian is # F(k) = e^((2 * pi * i) * k * x_0) - Gamma * pi * |k| # where x_0 is the offset and Gamma the FWHM. # thus as the instrument resolution function is centred around x_0, this simplifies to # e^(-Gamma * pi * |k|). window = np.exp((-self.e_res * np.pi * np.abs(t))) return window
def __repr__(self): """ Represent a ``LorentzianResolution`` object as the given FWHM energy resolution. """ return "Resolution" + str({'lorentzian': self.e_res})