Source code for MDMC.refinement.minimizers.minimizer_abs

"""A module for all minimizers which can be iterated to refine the potential
parameters"""
from abc import ABC, abstractmethod
from pathlib import Path
from typing import TYPE_CHECKING, Union

import pandas as pd

from MDMC.common.decorators import repr_decorator
from MDMC.MD import Parameters

if TYPE_CHECKING:
    from MDMC.control import Control


[docs] @repr_decorator('FoM', 'FoM_old', 'parameters', 'parameters_old_values') class Minimizer(ABC): """ An abstract class with methods common to all minimizers Parameters ---------- control : Control The ``Control`` object which uses this Minimizer. parameters : Parameters or list of Parameter A `list` of ``Parameter`` objects which will be fit Attributes ---------- history : list A `list` of minimization history, where each element contains the FoM, a `list` of the ``Parameters`` and a `str` with whether the step was Accepted or Rejected. FoM : float The FoM from the current ``Minimizer`` step FoM_old : float The FoM from the previous ``Minimizer`` step parameters : Parameters A ``Parameters`` object containing the ``Parameter`` objects being fitted parameters_old_values : Parameters A ``Parameters`` object containing the values of the ``Parameter`` objects from the previous minimizer step """ def __init__(self, control: 'Control', parameters: Parameters, previous_history: Union[str,Path] = None): self.control = control self.previous_history = previous_history self.FoM = None if isinstance(parameters, list): parameters = Parameters(parameters) self.parameters = parameters if self.previous_history: if isinstance(previous_history, str): self.previous_history = Path(self.previous_history) self.column_names, self._history = \ self.load_history(self.previous_history) self.previous_steps = len(self._history) self.FoM_old = self._history[-1][0] self.compatible = False self.enforcing_minimizer_compatibility(self.history_columns, self._history) self._check_parameters_fit_with_history(parameters, self.column_names, self._history) self.parameters_old_values = self.get_parameters_old_values(parameters, \ self.column_names, self._history) self._history.pop(-1) else: self._history = [] self.FoM_old = float('inf') self.parameters_old_values = None self.previous_steps = 0 self._check_parameters(parameters)
[docs] @abstractmethod def step(self, FoM: float) -> None: """ Increments the minimization by a step Parameters ---------- FoM : float The current figure of merit value. """ raise NotImplementedError
@property def history(self) -> pd.DataFrame: """ Get the history of the minimizer, with a single entry for each step of the minimizer Returns ------- pd.DataFrame Contains the minimizer variables for each refinement step. The variables which are included is concrete implementation specific, and is specified by `history_columns`. """ return pd.DataFrame(self._history, columns=self.history_columns) @property @abstractmethod def history_columns(self) -> 'list[str]': """ Get the column titles for the minimizer history Returns ------- list A 'list' of 'str' specifying the column titles for the minimizer history """ raise NotImplementedError
[docs] @abstractmethod def change_parameters(self) -> None: """Selects a new value for each ``Parameter``.""" raise NotImplementedError
[docs] @abstractmethod def has_converged(self) -> bool: """ Checks if the refinement process has converged/finished. The condition which needs to be met to make this True is optimizer dependent, but might be that the refinement has repeatedly returned a very similar FoM which meets some threshold, determining that it is close to the optimal, or it could be that the minimizer has measured at all the parameter points that were specified and it should now predict the best position. Returns ------- bool Whether or not the minimizer has converged/finished. """ raise NotImplementedError
@staticmethod def _check_parameters(parameters: Parameters) -> None: """ Checks the validity of the parameters on input Parameters ---------- parameters : Parameters All ``Parameter`` objects to validate Raises ------ ValueError If any ``Parameter`` is fixed If any ``Parameter is tied to another parameter """ for parameter in parameters.values(): if parameter.fixed is True: raise ValueError( f'Parameter {parameter.name} is fixed, and so cannot be refined') if parameter.tied is True: raise ValueError(f'Parameter {parameter.name} is tied to the value of ' 'another parameter and so cannot be refined')
[docs] def write_history(self, filename) -> None: """ Write the minimizer history to a csv file Parameters ---------- filename : str The name of the output file """ self.history.to_csv(filename)
[docs] def present_result(self) -> str: """ Extracts and returns the most appropriate output for the minimiser class, in an appropriate format e.g. minimum FOM and parameter values Returns ------- str A formatted string representing the output of the minimizer """ extracted_results = self.extract_result() return self.format_result_string(extracted_results)
[docs] @abstractmethod def reset_parameters(self) -> None: """Resets the parameters to a previous state""" raise NotImplementedError
[docs] @abstractmethod def extract_result(self) -> 'list[str]': """ Obtains the result of the minimizer to be presented/formatted Returns ------- list[str] A list of strings representing the data points output by the minimizer to be formatted into a string """ raise NotImplementedError
[docs] @abstractmethod def format_result_string(self, minimizer_output: list) -> str: """ Formats a string output for the results of the minimiser class. Parameters ---------- minimizer_output: list A list of printable values representing the data points output by the minimizer to be formatted into a string Returns ------- str A string encompassing the output of the minimizer. """ raise NotImplementedError
[docs] def load_history(self, history: Path) -> tuple: """Uses the `previous_history` variable to load a file of previous refinement steps. It then formats this into the column names and the actual parameter values. The loaded data is stored as numpy arrays. Parameters ---------- history: Path A file path which contains previous refinement data. Raises ---------- ValueError If the file with the previous history data can not be found. Returns ---------- tuple list of columns names, and a list containing a list for each refinement step from the loaded history file.""" with open(history, 'r', encoding='utf-8') as file: file_content = pd.read_csv(file) file_content = file_content.drop(file_content.columns[0],axis=1) column_names = file_content.columns.tolist() file_content = file_content.values.tolist() return column_names, file_content
def _check_parameters_fit_with_history(self, parameters: Parameters, column_names: list, history: Path): """Checks that the parameters loaded in from the file of previous refinement steps are compatible with those already defined in the control object. If the parameters are the same but with different numbers (arbitrary), then this is changed to be consistent. Parameters ---------- column_names: list A list of the columns names from a previous refinement file, excluding any step number column. history: list of lists A list, where each element is a subsequent list with parameter values and FoM value for each step in a previous refinement. Raises ---------- ValueError If the number of parameters in the history is not consistent with the current set up. If the names of the parameters in the history are not the same as those in the current set up.""" if history is not None: # using a reduced length for 'column_names' because it includes 'FoM' # and we want parameters only. if (len(column_names)-1) != len(parameters): raise ValueError(f'A history of {len(history.columns) -2}' ' is incompatible with the current setup.') split_param_list = [parameter.split()[0] for parameter in parameters] split_column_list = [column.split()[0] for column in column_names[1:]] if split_param_list != split_column_list: raise ValueError("The parameters in the minimizer history are not \ the same as those specified for refining in the current\ universe setup.") self.column_names = ['FoM', *list(parameters)]
[docs] def get_parameters_old_values(self, parameters: Parameters, column_names: list, history: list): """Retrieves the last set of parameters from a file containing data of previous refinement steps. Parameters ---------- column_names: list A list of the columns names for the past refinement data. history: list of lists A list, where each element is a subsequent list with parameter values and FoM value for each step in a previous refinement. Raises ---------- Exception If the last parameter values can not be retrieved from history. Returns ---------- dict (if there is a history file loaded) dictionary of parameter values from the last step. None (if there is no history file loaded) None type. """ if history: try: last_entry = history[-1] for param in parameters: parameters[param].value = last_entry[column_names.index(param)] except Exception as err: raise Exception('Issue retrieving most recent parameter values \ from given results file.') from err return parameters return None
[docs] def enforcing_minimizer_compatibility(self, column_names, history) -> None: """ Checks that the refinement file has the correct set up to be used with the current minimizer and makes the necessary changes for this compatibility. Parameters ---------- column_names: list A list of the columns names from a previous refinement file, excluding any step number column. history: list of lists A list, where each element is a subsequent list with parameter values and FoM value for each step in a previous refinement. Raises ---------- Exception If changing _history for minimizer compatibility fails. """ if history and self.compatible is False: if 'Change state' in column_names and \ ('Accepted' not in history[0] or 'Rejected' not in history[0]): for row in history: pos = column_names.index('Change state') row.insert(pos,'Accepted') elif 'Change state' not in column_names and \ ('Accepted' in history[0] or 'Rejected' in history[0]): for row in history: try: row.remove('Accepted') except ValueError: row.remove('Rejected') self.compatible = True self._history = history