Source code for MDMC.refinement.minimizers.GPR

"""The Gaussian-Process-Regression minimizer class"""
import itertools
from pathlib import Path
from textwrap import dedent
from typing import TYPE_CHECKING, Optional, Union

import numpy as np
import pandas as pd
import scipy.stats as st
from scipy.ndimage import minimum, minimum_position
from sklearn.gaussian_process import GaussianProcessRegressor as skGPR
from sklearn.gaussian_process import kernels

from MDMC.MD.parameters import Parameter, Parameters
from MDMC.refinement.minimizers.minimizer_abs import Minimizer

if TYPE_CHECKING:
    from MDMC.control import Control


[docs] class GPR(Minimizer): """ ``Minimizer`` employing Gaussian Process Regression. Creates a predefined array of points across all parameters and performs a simulation at each point. Then performs a Gaussian process regression fit across all measured points and predicts across a finer grid, before returning the predicted minimum FoM and the associated parameter values. This minimizer works best when physically realistic constraints are applied, in the absence of being provided with them, the minimizer sets constraints equal to 20% of the current parameter values. Parameters ---------- control: Control The ``Control`` object which uses this Minimizer. parameters: Parameters The parameters in the simulation Universe to be optimized Attributes ---------- history_columns: list[str] list of the column titles, and parameter names in the minimizer history """ def __init__(self, control: 'Control', parameters: Parameters, \ previous_history: Optional[Union[Path, str]] = None,**settings: dict): super().__init__(control, parameters, previous_history) np.random.seed(0) # This should mean results are reproducible in tests self.parameter_names, self.parameter_point_array = \ self.create_parameter_point_array(parameters) self.results_filename = settings.get('results_filename', None) self.change_parameters() self.previous_history = previous_history self.state_changed = False
[docs] def create_parameter_point_array(self, parameters: Parameters) -> 'tuple[list[str], list[tuple]]': """ Takes or creates the constraints of the parameters to be minimised and makes an array of points, placed on a Latin hypercube covering the space defined by the constraints. The resulting array of coordinates is self.control.n_steps long. Parameters ---------- parameters : Parameters All ``Parameter`` objects that are being refined. Returns ------- parameter_names : list Ordered ``list`` of names of parameters point_array : list ``list`` of parameter coordinates to be simulated """ parameter_names = [str(name) for name in parameters] samples = st.qmc.LatinHypercube(d=len(parameters), scramble=False, seed=1) try: latin_points = samples.random(n=self.control.n_steps) except AttributeError as error: raise AttributeError("GPR requires that the number of refinement steps " "is set when initialising Control.") from error lower_bounds = [self.create_bounds(parameter)[0] for parameter in parameters.values()] upper_bounds = [self.create_bounds(parameter)[1] for parameter in parameters.values()] latin_points = st.qmc.scale(latin_points, lower_bounds, upper_bounds) return parameter_names, latin_points
[docs] @staticmethod def create_bounds(parameter: Parameter, fraction: float = 0.3) -> 'tuple[float, float]': """ Returns either the parameter constraints (bounds) or bounds for each parameter equal to the parameter value =/- fraction*parameter.value, defaulting to +-30%. Raises a ValueError if value is zero and has no constraints since it is not possible to make a guess. Parameters ---------- parameter : Parameter A MDMC ``Parameter`` fraction : optional, float The fractional size of the bound, defaults to 0.3 == +-30% Returns ------- lower_bound : float The lower bound for the parameter upper_bound : float The upper bound for the parameter Raises ----- ValueError If `parameter.value` is zero and no constraints have been set for it there is no sensible way to guess bounds. """ try: lower_bound = parameter.constraints[0] upper_bound = parameter.constraints[1] except TypeError as error: if parameter.value != 0: lower_bound = parameter.value*(1.0 - fraction) upper_bound = parameter.value*(1.0 + fraction) else: raise ValueError(f'You have set parameter {parameter.name} value to zero and \ have no constraints set for it. Please set constraints for it') from error parameter.constraints = [lower_bound, upper_bound] return lower_bound, upper_bound
[docs] def has_converged(self) -> bool: """ Checks if the refinement process has finished, i.e. if all points across the parameter_point_array have been measured. Returns ------- bool Whether or not the minimizer has converged. """ return len(self.history) >= self.control.n_steps
@property def history_columns(self) -> 'list[str]': """ Returns column labels of the history Returns ------- list[str] A ``list`` of ``str`` containing all the column labels in the history """ return ['FoM'] + list(self.parameters)
[docs] def set_parameter_values(self, parameter_names: 'list[str]', values: 'list[float]') -> None: """ Assigns a new value to each parameter (specified by the parameter.name) Parameters ---------- parameter_names : list[str] A list of the names of the parameters whose values are to be set values : list[float] A list of the values to be set for each parameter """ for name, value in zip(parameter_names, values): self.parameters[name].value = value
[docs] def change_parameters(self) -> None: """ Selects a new value for each parameter from the array of parameter values to interrogate from the parameter_point_array. """ point_to_calculate = len(self._history) if point_to_calculate <= len(self.parameter_point_array): coordinates = self.parameter_point_array[point_to_calculate] self.set_parameter_values(self.parameter_names, coordinates)
[docs] def step(self, FoM: float) -> None: """ Increments the minimization by a step Parameters ---------- FoM : float The current figure of merit value. """ self.FoM = FoM history = [self.FoM] self.FoM_old = self.FoM self.state_changed = True values = np.array([self.parameters[p].value for p in self.parameters]) history.extend(values) self._history.append(history) if not self.has_converged(): self.change_parameters()
[docs] def reset_parameters(self) -> None: """Resets the Parameter values to the last set of values in parameter_point_array""" for i, parameter in enumerate(self.parameters): self.parameters[parameter].value = self.parameter_point_array[-1][i]
[docs] def GPR_fit(self, filename: Optional[str] = None, alpha: Optional[float] = 5, length_scale: Optional[float] = 4): """ Reads in the contents of the supplied filename, assumes it is the output of a refinement and can be read into a dataframe with the relevant parameters. Uses the recorded points file to perform a Gaussian process regression (https://scikit-learn.org/stable/modules/gaussian_process.html) and fit the points to some kernel, here using an RBF kernel. Parameters ---------- filename: str, optional The filename or full path to a comma separated value file containing the full output of the refinement. Defaults to None, but if results_filename is set by Control then this is passed into GPR as self.results_filename and used here. alpha: float, optional Hyperparameter for the fitting, which can represent Gaussian noise in measurement points, e.g. how much variation in the output you expect between MD runs. Defaults to 5. length_scale: float, optional Hyperparameter for the fitting, which can represent how quickly the kernel is able to change/oscillate. Defaults to 4.0. Returns ------- GaussianProcessRegressor : GaussianProcessRegressor The fitted points using GPR Minimum figure of merit : float Minimum parameter values : float """ if not filename: filename = self.results_filename records = pd.read_csv(filename, delimiter=',') records = records.astype(dtype=float, errors='ignore') # Convert to float where possible (i.e. not a string) FOMs = records['FoM'].to_list() min_FOM = np.min(FOMs) min_par_index = records.index[records['FoM']==min_FOM].tolist() records = records.drop(columns=['Unnamed: 0', 'FoM', 'Change state'], errors='ignore') # TODO this is hard coded to creation of history, may want to change min_pars = records.loc[min_par_index] coordinates = records.values.tolist() kernel = kernels.RBF(length_scale = np.ones(len(coordinates[0]))*length_scale) gpr = skGPR(kernel, n_restarts_optimizer=50, alpha = alpha) fitted_GPR = gpr.fit(coordinates, FOMs) return fitted_GPR, min_FOM, min_pars
[docs] @staticmethod def GPR_predict(input_regressor, points: Optional[float] = 100) -> 'tuple[list[tuple[float]], np.ndarray]': """ Takes a fitted Gaussian process regressor from GPR_fit, creates an fine array of points between the minimum and maximum measured parameter values and predicts the FoM at each one of these points. Parameters ---------- input_regressor : GaussianProcessRegressor A fitted Gaussian Process regressor object points: int, optional Number of points to predict the GPR over. Defaults to 100 Returns ------- point_array : list[tuple[float]] The ``list`` of coordinates at which the predictions are made prediction : numpy.ndarray A ``list`` of predicted figure of merit surface at each coordinate in the point_array """ regressor_points = input_regressor.X_train_ predictive_coordinates = [] for column in regressor_points.T: min_point, max_point = np.min(column), np.max(column) dense_array = np.linspace(min_point, max_point, points) predictive_coordinates.append(dense_array) point_array = list(itertools.product(*predictive_coordinates)) # predict method needs explicit array prediction = input_regressor.predict(point_array, return_std=False) return point_array, prediction
[docs] @staticmethod def global_minimum_position(predicted_FOMs: np.ndarray, measured_parameter_coordinates: 'list[float]') \ -> 'tuple[np.ndarray, float]': """ Gives the coordinates of the global minimum of the predicted figure of merit surface. Parameters ---------- predicted_FOMs : numpy.ndarray A numpy ``array`` of the predicted figures of merit measured_parameter_coordinates: list A ``list`` of the coordinates corresponding to the points at which the FoM was predicted Returns ------- minimum_parameters : numpy.ndarray The parameter coordinates where the minimum figure of merit is predicted to be min_FoM : float The predicted minimum figure of merit value """ min_coordinates = minimum_position(predicted_FOMs)[0] min_FoM = minimum(predicted_FOMs) minimum_parameters = measured_parameter_coordinates[min_coordinates] return minimum_parameters, min_FoM
[docs] def extract_result(self) -> list: """ Extracts the measured & predicted FoM and point(s) Returns ------- list A list of: coordinates of lowest FoM, Minimum FoM, Coordinate of best predicted FoM, Minimum predicted FoM """ fit, min_FoM_measured, min_parameters_measured = self.GPR_fit() points, FoMs = self.GPR_predict(fit) min_parameters_predicted, min_FoM_predicted = self.global_minimum_position(FoMs, points) self.set_parameter_values(self.parameter_names, min_parameters_predicted) min_parameters_measured = tuple(min_parameters_measured.iloc[0]) return [ min_parameters_measured, min_FoM_measured, min_parameters_predicted, min_FoM_predicted, ]
[docs] def format_result_string(self, minimizer_output: list) -> str: """ Parameters ---------- minimizer_output: list A list of: coordinates of lowest FoM, Minimum FoM, Coordinate of best predicted FoM, Minimum predicted FoM Returns ------- str An output string, formatted with the appropriate information about measured and predicted points """ if self.has_converged(): converged_message = 'The refinement has finished.' else: converged_message = "The refinement has not finished." # as of numpy 2.0.0, np.float64 has repr e.g. "np.float64(3.14)" instead of "3.14" # we use legacy print options to make the string nicer with less fiddling with np.printoptions(legacy="1.25"): output_string = f""" {converged_message} Minimum measured point is: {minimizer_output[0]} with an FoM of {minimizer_output[1]}. Minimum point predicted is: {minimizer_output[2]} for an FoM of {minimizer_output[3]}. """ return dedent(output_string)