"""The Gaussian-Process-Optimizer minimizer class"""
from pathlib import Path
from textwrap import dedent
from typing import TYPE_CHECKING, Optional, Union
import numpy as np
from skopt import Optimizer
from MDMC.refinement.minimizers.GPR import GPR
from MDMC.refinement.minimizers.minimizer_abs import Minimizer
if TYPE_CHECKING:
from MDMC.control import Control
from MDMC.MD.parameters import Parameters
[docs]
class GPO(Minimizer):
"""
``Minimizer`` which uses Gaussian process optimisation to find the global minimum
figure of merit.
The optimizer comes from scikit-optimize
https://scikit-optimize.github.io/stable/modules/generated/skopt.optimizer.Optimizer.html
It acts in an ask/tell architecture, where the optimizer is "asked" for the best
parameter values to measure at, then when the measurement is complete, we "tell"
the optimizer what the result was and it updates its model. The optimizer
is configured to cycle between prioritising exploration of the space and
exploitation of the minima, in order to find the global minimum without becoming
stuck in a local minimum.
The first ``n_initial`` points will be spaced according to a latin
hypercube, to cover the available space, subsequent points will then be chosen according
to the acquisition function and the measured values.
Due to the potential large jumps between the points, a reasonable amount of equlibration
of the MD simulation is likely required.
This optimizer is likely to be the fastest converging (fewest MD steps) option for MDMC.
Please see the documentation page explanation/minimizers for more information.
Parameters
----------
control: Control
The ``Control`` object which uses this Minimizer.
parameters: Parameters
The parameters in the simulation Universe to be optimized.
previous_history : Path
The Path to a results file containing previous refinement data.
Settings
----------
n_initial: int, optional
The number of points used for the initial latin hypercube coverage of the parameter
space. Optional. If no value is given it defaults to 20. Note that if the
associated ``Control`` objects has a maximum number of refinement steps (defined in
``Control.n_steps``) which is smaller than ``n_initial`` then that value will be
used instead.
Attributes
----------
history_columns: list[str]
list of the column titles, and parameter names in the minimizer history
"""
def __init__(self, control: 'Control', parameters: 'Parameters', \
previous_history: Optional[Union[Path, str]] = None, **settings: dict):
super().__init__(control, parameters, previous_history)
self.parameters = parameters
self.n_initial = settings.get('n_initial', 20)
self.previous_history = previous_history
self.state_changed = False
if self.control.n_steps:
self.n_initial = min(self.control.n_steps, self.n_initial)
self.predicted_FoM = 1e9
self.predicted_min_pos = []
# Ensure all parameters have bounds
self.parameter_bounds = [tuple(GPR.create_bounds(parameter)) \
for parameter in parameters.values()]
self.parameter_names = [str(name) for name in parameters]
np.random.seed(7) # This should mean results are reproducible in tests
# Initialise the optimizer, use Gaussian process estimator, an acquisition function which
# switches between exploration and exploitation, a sampling acquisition optimizer, and
# a latin hypercube for determining the positions of the inital 20 points (before points
# are decided based on the best position as determined by the Gaussian process).
initial_points = self.n_initial
if not self._history or len(self._history) < self.n_initial:
initial_points = self.n_initial
else:
initial_points = len(self._history)
self.optimizer = Optimizer(
self.parameter_bounds, "GP", acq_func="gp_hedge",
acq_optimizer="sampling", initial_point_generator= "lhs",
n_initial_points=initial_points, model_queue_size=1)
@property
def history_columns(self) -> 'list[str]':
"""
Returns column labels of the history
Returns
-------
list[str]
A ``list`` of ``str`` containing all the column labels in the history
"""
return ['FoM'] + list(self.parameters)
[docs]
def has_converged(self) -> bool:
"""
Checks if the refinement process has finished, i.e. if the number of points is
equal to or greater than the number of maximum refinement points of the associated
``Control`` object.
Returns
-------
bool
Whether or not the minimizer has converged.
"""
return len(self.history) >= self.control.n_steps + self.previous_steps
[docs]
def set_parameter_values(self, parameter_names: 'list[str]', values: 'list[float]') -> None:
"""
Assigns a new value to each parameter (specified by the parameter.name)
Parameters
----------
parameter_names : list[str]
A list of the names of the parameters whose values are to be set
values : list[float]
A list of the values to be set for each parameter
"""
for name, value in zip(parameter_names, values):
self.parameters[name].value = value
[docs]
def change_parameters(self) -> None:
"""
Selects a new value for each parameter from the array of parameter values to interrogate
from the parameter_point_array.
"""
if not self.has_converged():
coordinates = self.optimizer.ask()
self.set_parameter_values(self.parameter_names, coordinates)
[docs]
def reset_parameters(self) -> None:
"""Not necessary for this minimizer"""
# pylint: disable=unnecessary-pass
pass
[docs]
def step(self, FoM: float) -> None:
"""
Increments the minimization by a step, tells the optimizer the most recent measured point
asks for the coordinates of the next point, updates the history, checks for convergance
and then changes parameters if an additional step is required.
Parameters
----------
FoM : float
The current figure of merit value.
"""
self.FoM = FoM
values = list((self.parameters[p].value for p in self.parameters))
self.optimizer.tell(values, float(self.FoM))
self.predicted_FoM = self.optimizer.get_result()['fun']
self.predicted_min_pos = self.optimizer.get_result()['x']
history = [self.FoM]
self.state_changed = True
history.extend(values)
self._history.append(history)
if not self.has_converged():
self.change_parameters()