Source code for MDMC.readers.observables.LAMPPDF

"""Reader for pair distribution function data from LAMP's ascii files"""

from typing import TYPE_CHECKING

import numpy as np

from MDMC.readers.observables.obs_reader import PDFReader

if TYPE_CHECKING:
    from MDMC.trajectory_analysis.observables.pdf import PairDistributionFunction

[docs] class LAMPPDF(PDFReader): """ A class for reading files from LAMP that contain pair distribution function (PDF) data. LAMP's ascii output uses a single file, with the expected file structure being: Row-Number Distance pdf-total pdf1 pdf2 ... pdfN The column file format above is the default with the total PDF data contained in the 3 column. When initialising instances of this class it is possible to change this using the `pdf_col` parameter to select which data column contains the total PDF. The remaining columns (if they exist) are assumed to be partial PDFs. Parameters ---------- file_name : str File containing the pair distribution function data pdf_col : int, optional >= 3 Column that contains the data to be saved as the total PDF (`PairDistributionFunction.PDF`). Optional, default value is 3 as columns 1 and 2 are reserved for the row-counter and the distance value. partial_strings : list of tuples List of tuples to specify the labels of the partial pairs to be saved as such in `PairDistributionFunction.partial_pdfs`. All columns in the data file apart from the row-counter (column 1), distance values (column 2) and the one for the total PDF (`pdf_col`) are saved as `partial_pdfs`. The labels are applied in numerical order. If no labels are specified, the column header in the data file is used as the label. """ def __init__(self, file_name: str, pdf_col: int = 3, partial_strings: 'list[tuple]' = None): super().__init__(file_name) self.pdf_col = pdf_col self.partial_pdfs = {} self.partial_strings = partial_strings
[docs] def assign(self, observable: 'PairDistributionFunction') -> None: # disable pylint warning about writing to the `Observable` #pylint: disable=protected-access """ Method to assign the data parsed by the LAMPPDF reader to a PDF `Observable`. Parameters ---------- observable : PairDistributionFunction The PairDistributionFunction to which the parsed information should be assiged. """ observable._independent_variables = self.independent_variables observable._dependent_variables = self.dependent_variables observable._errors = self.errors observable.partial_pdfs = self.partial_pdfs observable.partial_strings = self.partial_strings
[docs] def parse(self, **settings: dict) -> None: """ Parse the file information `r` is the radial distance (in Angstrom), expected in column 2 of the file `PDF` is the total pair distribution function (in barn), by default expected in column 3 of the file, but can be specified by `pdf_col` setting. `partial_pairs` are the partial PDFs (in barn), imported from the remaining columns with the labels of the partial pairs either specified by `partial_strings` or taken from the column headers. """ pdf_array = [] for i, line in enumerate(self.file): columns = line.strip().split() if i == 2: #extract column headers if needed if self.partial_strings is None: self.partial_strings = columns[4:] elif i == 3: #the 4th line contains information on the time-step and number of rows/distances r_array = np.zeros(int(columns[1])) elif i > 3: r_array[i - 4] = float(columns[1]) # columns 3 onwards are the pair distribution functions (in barn) pdf_array.append([float(value) for value in columns[2:]]) pdf_array = np.array(pdf_array) self.r = r_array self.PDF = pdf_array[:, self.pdf_col-3] self.PDF_err = np.zeros(np.shape(self.PDF)) # select partial pair columns by deleting the total PDF column pp_array = np.delete(pdf_array, self.pdf_col-3, axis=1) try: assert np.shape(pp_array)[1] == len(self.partial_strings) except AssertionError as error: msg = (f'The number of partial pair labels ({len(self.partial_strings)}) is not the ' f'same as the number of data columns for the pairs ({np.shape(pp_array)[1]}). ' f'This is either because the number of labels passed is incorrect or because ' f'the column labels are not recognised correctly, e.g. due to an unexpected ' f'delimiter.') raise AssertionError(msg) from error for i, string in enumerate(self.partial_strings): self.partial_pdfs[string] = pp_array[:, i]