Source code for MDMC.control.plot_results

"""A module for plotting data and results of a minimization."""
import logging
import os
from abc import ABC, abstractmethod

import corner
import IPython.display
import numpy as np
import pandas as pd
from skopt import Optimizer


[docs] class PlotResults(): """ A class to read in any completed refinement history file, create a Gaussain Process Optimizer and then do sampling on the result to create a corner plot. Parameters: ----------- filename : str path to the file to load in the refinement history quantiles : list, optional optional, list of the quantiles to be plotted on the corner plot, defaults to [0.34, 0.5, 0.68], e.g. 1-sigma MH_norm : float, optional The Metropolis-Hastings normalising factor to determine if points should be kept or not, defaults to 20 points : int, optional Number of points to plot on the corner plot, defaults to 100,000 """ def __init__(self, filename: str, quantiles: 'list[float]'=None, MH_norm: float=20, points: int =100000): self.filename = filename self.quantiles = [0.34, 0.5, 0.68] if quantiles is None else quantiles self.MH_norm = MH_norm self.points = points self.parameter_names, self.parameter_coords,\ self.minmax_coords, self.FoMs = self.get_measured_points() # Create the optimizer try: # The optimizer had a default minimum of 10 points which has since been changed to 2. # We are still using this '10' value here because we are assuming it is a good minimum # for 'meaningful' plots, but technically anything with 2 points can be minimised and # shouldn't cause an error. old_optimizer_min = 10 self.optimizer = Optimizer(self.minmax_coords,"GP", n_initial_points=min(old_optimizer_min, len(self.FoMs)), acq_func="gp_hedge", acq_optimizer="sampling", model_queue_size=1) if len(self.FoMs) < old_optimizer_min: logging.warning("You have only used %d refinement steps," " use a larger number for more meaningful plots.", len(self.FoMs)) except ValueError as error: raise ValueError("Insufficient number of refinement steps," " please use at least 10.") from error # Train the optimizer self.optimizer.tell(self.parameter_coords, self.FoMs)
[docs] def get_measured_points(self) -> tuple: """Opens the dataframe in `filename` and extracts the measured parameters names, values and associated figures of merit. Returns: -------- tuple of (parameter names, parameter coordinates, min and max parameters, FoM's) """ records = pd.read_csv(self.filename, delimiter=',') records = records.astype(dtype=float, errors='ignore') # Convert to float where possible (i.e. not a string) FoMs = records['FoM'].to_list() records = records.drop(columns=['Unnamed: 0', 'FoM', 'Change state'], errors='ignore') # TODO this is hard coded to creation of history, may want to change coordinates = records.values.tolist() names = records.columns.tolist() minmax_coordinates = [(min(np.array(coord)), max(np.array(coord))) for coord in np.array(coordinates).T] return names, coordinates, minmax_coordinates, FoMs
def _expected_minimum_random_sampling(self) -> 'tuple[list, float, list, list[list]]': """ This is almost verbatim a copy of code from scikit-optimize but with the samples as an additional output: https://github.com/scikit-optimize/scikit-optimize/blob/de32b5fd2205a1e58526f3cacd0422a26d315d0f/skopt/utils.py#L259 Returns ------- min_x : list location of the minimum. y_random[index_best_objective] : float the surrogate function value at the minimum. y_random : np.array An array of length "self.points" containing surrogate function values at each point random_samples : list[list] A list of length "self.points" containing the coordinates of each prediction """ # sample points from search space, set a random seed for reproducibility = 7 w.l.o.g. random_samples = self.optimizer.space.rvs(self.points, random_state=7) # make estimations with surrogate model = self.optimizer.models[-1] y_random = model.predict(self.optimizer.space.transform(random_samples)) index_best_objective = np.argmin(y_random) min_x = random_samples[index_best_objective] return min_x, y_random[index_best_objective], y_random, random_samples def _remove_points(self, chi_squared: 'list[float]', coords: 'list[list]') -> 'tuple[list, list]': """ Removes points with poor figure of merit based on a Metropolis-Hastings type rule, where the likelihood of keeping a point is dependent on the exponent of the difference between its figure of merit, and that of the best one found, divided by MH_norm. Parameters ---------- chi_squared : list[float] A list of the predicted chi-squared value at each coordinate coords : list[list] A list of the coordinates at which all of the chi-squared predictions are made Returns ------- reduced_chi : list A list of the remaining chi-squared points reduced_coords : list[list] A list of the remaining coordinates """ np.random.seed(16) # Set for reproducible output - will always retain same points lowest_chi = min(chi_squared) points_to_keep = np.random.random(size=chi_squared.shape) < \ np.exp((lowest_chi - chi_squared)/(lowest_chi/self.MH_norm)) reduced_chi=chi_squared[points_to_keep] reduced_coords = np.array(coords)[points_to_keep] return reduced_chi, reduced_coords
[docs] def create_cornerplot(self) -> None: """ Performs a random sample across the coordinate space giving a predicted figure of merit at every point. Then removes points with poor figures of merit, according to a Metropolis-Hastings type rule, where the likelihood of keeping a point is dependant on the exponent of the difference between its figure of merit, and that of the best one found, divided by MC_norm. A corner plot is then returned (a matplotlib figure object), which can be displayed or exported. Returns ------- corner plot : Matplotlib.figure.Figure A plot displaying every parameter combination with their variances and covariances """ try: _, _, y_random, coords = \ self._expected_minimum_random_sampling() except IndexError: msg = (f"\n \n Your data file, {os.path.abspath(f'{self.filename}')}," " appears not to have any points in, please check you have" " run the refinement and it saved correctly. \n") print(msg) return None _, reduced_coordinate_list = self._remove_points(y_random, coords) data = np.empty(shape=np.array(reduced_coordinate_list).shape) for i in range(np.array(reduced_coordinate_list).shape[1]): data[:,i] = np.array(reduced_coordinate_list)[:,i] labels = [str(name) for name in self.parameter_names] cornerplot = corner.corner(data, labels = labels, quantiles = [0.34, 0.5, 0.68]) mean, std = np.mean(data, axis=0), np.std(data, axis=0) return cornerplot, mean, std
[docs] class DataPrinter(ABC): """ A class for printing data during a minimisation. """
[docs] @abstractmethod def print_data(self, history): """ Update table at the end of a refinement step. Parameters: history The history of the minimizer data is printed from. """ raise NotImplementedError
[docs] @abstractmethod def print_header(self, history): """ Create table headers at the start of refinement. Parameters: history The history of the minimizer data is printed from. """ raise NotImplementedError
[docs] class PlaintextDataPrinter(DataPrinter): """Plaintext data printer."""
[docs] def print_data(self, history) -> None: with pd.option_context('display.max_colwidth', 12, 'display.precision', 5, 'display.float_format', '{:.4g}'.format): n_step = history.iloc[-1].name output = history.loc[[n_step]].to_string( col_space=12, index=False, header=False).split('\n') data = '{:4d}'.format(n_step) + ''.join(output) print(data)
[docs] def print_header(self, history) -> None: def format_column(column): column = column if len(column) < 13 else column[:9] + '...' return ' ' * (12 - len(column)) + column columns = ' '.join([format_column(col) for col in history.columns]) header = 'Step' + columns print(header)
[docs] class IPythonDataPrinter(DataPrinter): """Prettier IPython data printer, for Jupyter Notebooks, etc.""" def __init__(self): self.display = IPython.display.DisplayHandle()
[docs] def print_data(self, history) -> None: history_table = pd.DataFrame(history, columns=history.columns) history_table.index.name = "Step" self.display.update(history_table)
[docs] def print_header(self, history) -> None: history_table = pd.DataFrame(columns=history.columns) self.display.display(history_table)
data_printers = { 'plaintext': PlaintextDataPrinter, 'ipython': IPythonDataPrinter, }