Source code for MDMC.MD.interaction_functions

"""A module for storing atomic interaction functions

Contains class InteractionFunction from which all interaction function classes
must derive.  All functions describing atomic interactions must be added to this
module in order to be called by a universe.  If needed, the interaction function
classes can be extended to contain actual function definitions.

Contains class Parameter, which defines the name and value of each
parameter which belongs to an InteractionFunction, and whether the parameter is
fixed, has constraints or is tied.

Contains filters for filtering list of parameters based on a predicate."""

import functools
from itertools import zip_longest
from typing import TYPE_CHECKING, Callable

import numpy as np

from MDMC.common import units
from MDMC.common.decorators import repr_decorator
from MDMC.MD.parameters import Parameter, Parameters

if TYPE_CHECKING:
    from MDMC.MD.interactions import Interaction


[docs] @repr_decorator('parameters') class InteractionFunction: """ Base class for interaction functions, which can be user supplied Parameters --------- val_dict : dict ``name:value`` pairs. Currently this must be ordered alphabetically. ``value`` must either be an object with a ``value`` and a ``unit`` (e.g. a ``UnitFloat`` object), or a (`float`, `str`) `tuple`, where `float` is the value and `str` is the unit. """ def __init__(self, val_dict: dict): # locals which are excluded from Parameter creation excluded = ['self', 'settings', '__class__'] parameters = Parameters() for name, value in val_dict.items(): if name not in excluded: parameter = Parameter(value, name) parameters.append(parameter) # Create an attribute with the same name as the Parameter setattr(self, parameter.type, parameter) self.parameters = parameters def __str__(self) -> str: parameters = ' '.join([p.name + ': ' + str(p.value) + ',' for p in self.parameters.values()]).strip(',') return f'{self.__class__.__name__} {parameters}' def __eq__(self, other): return (id(self) == id(other) or all([(type(self) is type(other)), ([p.type for p in self.parameters.values()] == [p.type for p in other.parameters.values()]), (self.parameters_values == other.parameters_values)])) @property def parameters(self) -> Parameters: """ Get or set the interaction function's parameters Returns ------- Parameters A Parameters object containing each ``Parameter`` """ return self._parameters @parameters.setter def parameters(self, value: Parameters): self._parameters = value @property def parameters_values(self) -> np.ndarray: """ Get the values for all ``Parameters`` objects Returns ------- numpy.ndarray A NumPy ``array`` of values for all ``Parameter`` """ return np.array([p.value for p in self.parameters.values()]) @property def name(self) -> str: """ Get the name of the class of the ``InteractionFunction`` Returns ------- str The class name """ return self.__class__.__name__
[docs] def set_parameters_interactions(self, interaction: 'Interaction') -> None: """ Sets the ``parent`` ``Interaction`` for all ``Parameters`` objects Parameters ---------- interaction : Interaction An ``Interaction`` to set as the ``parent`` of all the ``Parameters`` """ for parameter in self.parameters: self.parameters[parameter].interactions = interaction
[docs] def inter_func_decorator(*parameter_units) -> Callable: """ Decorates a method to add units to all positional and any relevant keyword arguments Designed for adding units to parameters of ``__init__`` method for subclasses of ``InteractionFunction``. Parameters ---------- *parameter_units : tuple One or more `tuple` where the first element is a `str` giving the keyword name of an expected parameter. The second element is a `str` or ``Unit``, where each `str` (or ``Unit``) is a unit which is applied to the corresponding value passed to the decorated method. If one of the values is unitless, pass `None` at the corresponding index in ``parameter_units``. Examples -------- The following adds units of ``'Ang'`` to parameter ``alpha``, units of ``'s'`` to the parameter ``beta``, and units of ``'atm'`` to the parameter ``gamma``: .. highlight:: python .. code-block:: python @inter_func_decorator(('alpha', 'Ang'), ('beta', 's'), ('gamma', 'Pa')) def __init__(self, alpha, beta, gamma): ... If one of the parameters is unitless, this can be set with `None` (in which case the returned type will be the same as the original value i.e. a ``UnitFloat`` or ``UnitNDArray`` will not be created). So to set ``epsilon`` as unitless: .. highlight:: python .. code-block:: python @inter_func_decorator(('delta', 'arb'), ('epsilon', None), ('gamma', 'deg')) def __init__(self, delta, epsilon, gamma): ... """ # Ignore pylint warning for decorator inner function docstrings #pylint: disable=missing-docstring def decorator(func): def unit_creator(value, unit): # If no unit is provided, assume unitless and just return value if unit is None: return value # try/except to determine whether value is float or array try: return units.UnitFloat(value, unit) except TypeError: return units.unit_array(value, unit) @functools.wraps(func) def wrapper(self, *values, **settings): # If the name associated with a unit in parameter_units matches a # keyword argument (in **settings), then associate that parameter # with its unit. If not, then the parameter has been passed as a # positional argument (in *values) and so we associate the next # entry in *values with that unit (as we can rely on the order of # the arguments being the same as the order of units in the # decorator) values = list(values) for name, unit in parameter_units: if name in settings: settings[name] = unit_creator(settings[name], unit) else: settings[name] = unit_creator(values.pop(0), unit) return func(self, **settings) return wrapper return decorator
[docs] class Buckingham(InteractionFunction): r""" The Buckingham potential (in units of ``kJ mol^-1``) for the interaction of 2 atoms at distance r (in ``Ang``) has the form: .. math:: {\Phi _{12}(r)=A\exp \left(-Br\right)-{\frac {C}{r^{6}}}} The first and second terms represent a repulsion and attraction respectively, and so all parameters :math:`A`, :math:`B` and :math:`C` should be positive in order to be physically valid. Parameters ---------- A : float The Buckingham parameter A in units of ``kJ mol^-1`` B : float The Buckingham parameter B in units of ``Ang^-1`` C : float The Buckingham parameter C in units of ``Ang^6 kJ mol^-1`` Examples -------- The following creates a ``Dispersion`` interaction with a ``Buckingham`` functional form: .. highlight:: python .. code-block:: python buck = Buckingham(3.65e-18, 6.71, 6.94e-22) O_disp = Dispersion(universe, (O.atom_type, O.atom_type), function=buck) """ @inter_func_decorator(('A', units.ENERGY), ('B', units.LENGTH ** -1), ('C', units.LENGTH ** 6 * units.ENERGY)) def __init__(self, A: float, B: float, C: float): super().__init__(locals())
[docs] class Coulomb(InteractionFunction): r""" Coulomb interaction for charged particles: .. math:: E = \frac{Cq_{i}q_{j}}{r} Parameters ---------- charge : float The charge in units of ``e`` Examples -------- The following creates a ``Coulombic`` interaction with a ``Coulomb`` functional form: .. highlight:: python .. code-block:: python O = Atom('O') coul = Coulomb(-0.8476) O_coulombic = Coulombic(atoms=O, cutoff=10., function=coul) As ``Coulomb`` is the default functional form of ``Coulombic`` interactions when an ``Atom`` is created, this is equivalent to setting the ``charge`` on an ``Atom``: .. highlight:: python .. code-block:: python O = Atom('O', charge=-0.8476) """ @inter_func_decorator(('charge', units.CHARGE)) def __init__(self, charge: float): super().__init__(locals())
[docs] class HarmonicPotential(InteractionFunction): r""" Harmonic potential for bond stretching, and angular and improper dihedral vibration, with the form: .. math:: E = K(r-r_0)^2 As ``HarmonicPotential`` can be used with several different ``Interaction`` types, the ``Interaction`` type must be specified, so that the correct units can be assigned to the ``equilibrium_state`` and ``potential_strength`` parameters. Parameters ---------- equilibrium_state : float The equilibrium state of the object in either ``Ang`` or ``degrees``, depending on the ``interaction_type`` passed. potential_strength : float The potential strength in units of ``kJ mol^-1 Ang^-2`` (linear) or ``kJ mol^-1 rad^-2`` (angular/improper), depending on the ``interaction_type`` passed. **settings interaction_type : str A `str` specifying either ``'bond'``, ``'angle'`` or ``'improper'``. This assigns the correct units to ``equilibrium_state`` and ``potential_strength``. This keyword must be passed. Raises ------ ValueError The ``interaction_type`` must be ``'bond'``, ``'angle'``, or ``'improper'`` TypeError An ``interaction_type`` of ``'bond'``, ``'angle'``, or ``'improper'`` must be passed Examples -------- The following creates a ``HarmonicPotential`` for a ``Bond`` interaction: .. highlight:: python .. code-block:: python hp = HarmonicPotential(1., 4637., interaction_type='bond') The following creates a ``HarmonicPotential`` for a ``BondAngle`` interaction: .. highlight:: python .. code-block:: python hp = HarmonicPotential(109.47, 383., interaction_type='angle') The following creates a ``HarmonicPotential`` for a ``DihedralAngle`` interaction with ``improper==True`` (i.e. an improper dihedral): .. highlight:: python .. code-block:: python hp = HarmonicPotential(180., 20.92, interaction_type='improper') """ def __new__(cls, equilibrium_state: float, potential_strength: float, **settings: dict): # interaction_type is a required keyword, but has to be passed through # settings so that it can be correctly passed in inter_func_decorator try: if settings['interaction_type'].lower() == 'bond': eq_unit = units.LENGTH pot_unit = units.ENERGY / units.LENGTH ** 2 elif settings['interaction_type'].lower() in ('angle', 'bondangle', 'improper'): eq_unit = units.ANGLE # Use radians rather than system angle units (degrees) pot_unit = units.ENERGY / units.Unit('rad') ** 2 else: raise ValueError('The interaction_type must be "bond", "angle",' ' or "improper"') except KeyError as err: raise TypeError('An interaction_type of "bond", "angle" or improper"' ' must be passed') from err # Create a new (uninitialized) HarmonicPotential h_pot = super().__new__(cls) # Decorate __init__ with inter_func_decorator to apply to correct units # (which are dependent on the interaction_type) to the equilibrium_state # and potential_strength parameters. This decoration has to be done in # new rather than directly on __init__ as it requires the dynamically # defined interaction_type to determine the units. cls_init (which is a # copy of the original cls.__init__) is required (rather than just # applying the decorator directly to cls.__init__) because after the # first HarmonicPotential is called, the cls.__init__ will be decorated. # Therefore, after this if cls.__init__ is decorated again, it will be # irrelevant, as the original decorator will be the last called. So # cls._init is used as it will always be equivalent to the undecorated # __init__ visible below. cls.__init__ = inter_func_decorator(('equilibrium_state', eq_unit), ('potential_strength', pot_unit))(cls._init) return h_pot def __init__(self, equilibrium_state, potential_strength, **settings): super().__init__(locals()) # Declare a class method equal to the __init__ method _init = __init__
[docs] class Periodic(InteractionFunction): r""" Periodic potential for proper and improper dihedral interactions, with the form: .. math:: E = \sum_{i=1,m}K_i[1.0+\cos(n_i\phi-d_i)] where \phi is angle between the ijk and jkl planes (where i, j, k, and l are the four atoms of the dihedral). Parameters ---------- K1 : float The K parameter (energy) of the first order term, in units of ``kJ mol^-1`` n1 : int The n parameter of the first order term, which is unitless. This must be a non-negative `int`. d1 : float The d parameter (angle) of the first order term, in units of ``deg`` *parameters K, n, and d parameters for higher order terms. These must be ordered K2, n2, d2, K3, n3, d3, K4, n4, d4 etc. The types and units of these parameters are the same as the corresponding first order parameters listed above. Examples -------- The following creates a first order ``Periodic`` for a ``DihedralAngle`` interaction with ``improper==True`` (i.e. an improper dihedral): .. highlight:: python .. code-block:: python periodic = Periodic(87.864, 2, 180.) improper = DihedralAngle(atoms=[C, H1, H2, O], improper=True, function=periodic) The following creates a third order ``Periodic`` for a ``DihedralAngle`` interaction with ``improper==False`` (i.e. a proper dihedral), with ``K1=3.53548``, ``K2=-4.02501`` and ``K3=2.98319``: .. highlight:: python .. code-block:: python periodic = Periodic(3.53548, 1, 0., -4.02501, 2, 180., 2.98319, 3, 0.) proper = DihedralAngle(atoms=[N, C1, C2, C3], improper=False, function=periodic) """ def __init__(self, K1: float, n1: float, d1: float, *parameters: float): # Check that total number of parameters is divisible by 3 # Check that all n values are non-negative ints val_dict = {} all_parameters = [iter((K1, n1, d1) + parameters)] * 3 # Assign attributes K$, n$, d$, where $ is the order (e.g. K1, n1, d1 # for the first order etc.) for order, order_parameters in enumerate(zip_longest(*all_parameters), start=1): # If *parameters is not divisible by three, one or two indexes of # order_parameters will be None if None in order_parameters: raise TypeError('*parameters must contain a K, n, and d value for' ' each order >2 (i.e. it should contain a' ' number of values exactly divisible by 3)') if not isinstance(order_parameters[1], (int, np.integer)): raise TypeError('All n values must be of type int') if order_parameters[1] < 0.: raise ValueError('All n values must be non-negative ints') val_dict['K{0}'.format(order)] = (units.UnitFloat(order_parameters[0], units.ENERGY)) val_dict['n{0}'.format(order)] = order_parameters[1] val_dict['d{0}'.format(order)] = (units.UnitFloat(order_parameters[2], units.ANGLE)) super().__init__(val_dict)
[docs] class LennardJones(InteractionFunction): r""" Dispersive Lennard-Jones interaction with the form: .. math:: E = 4{\epsilon}[(\frac{\sigma}{r})^{12} - (\frac{\sigma}{r})^6)] \qquad r < r_c Parameters ---------- epsilon : float The LJ epsilon value in units of ``kJ mol^-1`` sigma : float The LJ sigma value in units of ``Ang`` **settings cutoff : float The distance in ``Ang`` at which the potential is cutoff long_range_solver : str The long range solver, either ``'PPPM'``, ``'PME'``, or ``'E'`` for Particle-Particle Particle-Mesh, Particle Mesh Ewald, or Ewald solvers Examples -------- The following creates a ``Dispersion`` interaction with a ``LennardJones`` functional form: .. highlight:: python .. code-block:: python lj = LennardJones(0.6502, 3.166) O_disp = Disperion(universe, (O.atom_type, O.atom_type), function=lj) """ @inter_func_decorator(('epsilon', units.ENERGY), ('sigma', units.LENGTH)) def __init__(self, epsilon: float, sigma: float, **settings: dict): super().__init__({'epsilon': epsilon, 'sigma': sigma}) self.cutoff = settings.get('cutoff', None) self.solver = settings.get('long_range_solver', None)